Properties of RNA polymerase bypass mutants: implications for the role of ppGpp and its co-factor DksA in controlling transcription dependent on sigma54.

نویسندگان

  • Agnieszka Szalewska-Palasz
  • Linda U M Johansson
  • Lisandro M D Bernardo
  • Eleonore Skärfstad
  • Ewa Stec
  • Kristoffer Brännström
  • Victoria Shingler
چکیده

The bacterial nutritional and stress alarmone ppGpp and its co-factor DksA directly bind RNA polymerase to regulate its activity at certain sigma70-dependent promoters. A number of promoters that are dependent on alternative sigma-factors function poorly in the absence of ppGpp. These include the Pseudomonas-derived sigma54-dependent Po promoter and several other sigma54-promoters, the transcription from which is essentially abolished in Escherichia coli devoid of ppGpp and DksA. However, ppGpp and DksA have no apparent effect on reconstituted in vitro sigma54-transcription, which suggests an indirect mechanism of control. Here we report analysis of five hyper-suppressor mutants within the beta- and beta'-subunits of core RNA polymerase that allow high levels of transcription from the sigma54-Po promoter in the absence of ppGpp. Using in vitro transcription and competition assays, we present evidence that these core RNA polymerase mutants are defective in one or both of two properties that could combine to explain their hyper-suppressor phenotypes: (i) modulation of competitive association with sigma-factors to favor sigma54-holoenzyme formation over that with sigma70, and (ii) reduced innate stability of RNA polymerase-promoter complexes, which mimics the essential effects of ppGpp and DksA for negative regulation of stringent sigma70-promoters. Both these properties of the mutant holoenzymes support a recently proposed mechanism for regulation of sigma54-transcription that depends on the potent negative effects of ppGpp and DksA on transcription from powerful stringent sigma70-promoters, and suggests that stringent regulation is a key mechanism by which the activity of alternative sigma-factors is controlled to meet cellular requirements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The guanosine tetraphosphate (ppGpp) alarmone, DksA and promoter affinity for RNA polymerase in regulation of sigma-dependent transcription.

The RNA polymerase-binding protein DksA is a cofactor required for guanosine tetraphosphate (ppGpp)-responsive control of transcription from sigma70 promoters. Here we present evidence: (i) that both DksA and ppGpp are required for in vivo sigma54 transcription even though they do not have any major direct effects on sigma54 transcription in reconstituted in vitro transcription and sigma-factor...

متن کامل

DksA A Critical Component of the Transcription Initiation Machinery that Potentiates the Regulation of rRNA Promoters by ppGpp and the Initiating NTP

Ribosomal RNA (rRNA) transcription is regulated primarily at the level of initiation from rRNA promoters. The unusual kinetic properties of these promoters result in their specific regulation by two small molecule signals, ppGpp and the initiating NTP, that bind to RNA polymerase (RNAP) at all promoters. We show here that DksA, a protein previously unsuspected as a transcription factor, is abso...

متن کامل

The dual role of DksA protein in the regulation of Escherichia coli pArgX promoter

Gene expression regulation by the stringent response effector, ppGpp, is facilitated by DksA protein; however DksA and ppGpp can play independent roles in transcription. In Escherichia coli, the pArgX promoter which initiates the transcription of four tRNA genes was shown to be inhibited by ppGpp. Our studies on the role of DksA in pArgX regulation revealed that it can stimulate transcription b...

متن کامل

Functional characterization of the stringent response regulatory gene dksA of Vibrio cholerae and its role in modulation of virulence phenotypes.

In bacteria, nutrient deprivation evokes the stringent response, which is mediated by the small intracellular signaling molecule ppGpp. In Gram negatives, the RelA enzyme synthesizes and SpoT hydrolyzes ppGpp, although the latter protein also has weak synthetase activity. DksA, a recently identified RNA polymerase binding transcription factor, acts as a coregulator along with ppGpp for controll...

متن کامل

Antagonistic regulation of Escherichia coli ribosomal RNA rrnB P1 promoter activity by GreA and DksA.

The Escherichia coli proteins DksA, GreA, and GreB are all structural homologs that bind the secondary channel of RNA polymerase (RNAP) but are thought to act at different levels of transcription. DksA, with its co-factor ppGpp, inhibits rrnB P1 transcription initiation, whereas GreA and GreB activate RNAP to cleave back-tracked RNA during elongational pausing. Here, in vivo and in vitro eviden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 25  شماره 

صفحات  -

تاریخ انتشار 2007